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This paper presents the results of a set of continuous-filament-tow fracturing experiments
designed to produce highly collimated discontinuous-fiber-arrays with well-dispersed
fractures. Discontinuous-fiber-arrays have at least two uses: reinforcing a matrix phase at
high volume fraction and, when impregnated with a fluid, performing as a microrheometer.
The lubricating fluid used for these experiments is uncured TCR epoxy, which may be
stored at room temperature for up to one year. Tows with gauge lengths of 287, 362 and
400 mm were fractured into discontinuous fibers arrays during extension at four percent
strain/min. Weibull analysis showed singlet failures were responsible for the fracture
process of the two largest gauge length samples and multiplet failures accounted for the
bulk of fracture at the shortest gauge length. Normal distributions approximated the
filament length distribution at all gauge lengths. The longest gauge sample had the best
distribution of filament breaks and had an average fiber length of 207 mm and a standard
deviation of 65 mm. C© 2000 Kluwer Academic Publishers

1. Introduction
DFAs have interesting properties for both scientific ex-
periments and structural applications. Manufacturers
create DFAs from continuous-filament tow that passes
through a proprietary stretch breaking process, e.g.
the Shappe and DuPont LDFTM processes. DFAs have
at least two uses: reinforcing a matrix phase at high
volume fraction and, when impregnated with a fluid,
performing as a microrheometer. In the first case, the
DFA allows forming operations that stretch a reinforced
sheet in the fiber direction. Yet, with its highly colli-
mated filaments, a DFA system will have the same fiber
volume fraction found in continuous fiber systems. Al-
though the discontinuities reduce the strength of the
material, there are circumstances where the lower per-
formance is acceptable if automation reduces the pro-
duction cost of a complex-shape laminate.

The second DFA application, microrheology, is the
measure of dynamic fluid properties in layers that are
under 1µm thick. The typical matrix layer thickness
in polymer composites that contain aligned carbon
fibers measuring 5–7 microns in diameter is one
micron or less. The fluid impregnation process makes
thinner fluid layers possible. If a fracturing process
produces a favorable mean fiber length and fiber
length distribution, fractured tow may be employed
as a microrheometer [1]. Drawing the DFA tow in the
fiber direction converts the global applied tensile strain
rate into a local shear-strain-rate between filaments.
Selecting the type of fiber, e.g. glass or carbon, and its
surface treatment would provide a tool for measuring

effects of these parameters on the dynamic viscosity at
the microscopic level.

This work was performed to meet the following ob-
jectives:

1. Determine the properties needed in a highly colli-
mated discontinuous-fiber-array (DFA) to get the rhe-
ological performance desired.

2. Determine how the failure response of filaments
and fiber bundles may be applied to create a model
stretch-breaking process that generates DFAs.

2. Theory
The two topics considered in this section are the effects
of filament length on DFA systems and the fracture be-
havior of filaments and tows. First, the effect of filament
length on the tensile stress response is reviewed. This
provides target values of filament length. In the second
topic, a review of the interactive failure response of fila-
ments shows that these interactions must be minimized
in order to produce a good DFA tow.

2.1. Effect of filament length
Unlike continuous-fiber reinforcements, impregnated
DFA systems can stretch in the fiber direction. The re-
sistance to the stretching is the elongational viscosity,
which in an unfilled fluid is a shear-free-flow condition
[2]. Although the globally applied flow is shear-free,
relative filament motion generates a local shear flow
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between filaments. Standard practice requires calling
this viscosity an apparent value since a local shear stress
and a strain rate gradient are present. The filaments gen-
erate the local shear flow in the following manner. Un-
der the velocity gradient in the fluid, the filaments move
with the velocity of their centroids within that gradient
[3–6]. Since the centroids are distributed, each filament
moves with a velocity that varies from the velocity of its
neighbors. Studies of the elongational viscosity of DFA
agree that the major effect of the relative motion is an
increase in the apparent elongation viscosity and that
increase scales with the square of the filament aspect
ratio [7, 8]. Filament aspect ratio equalsL/D, which is
the length of the filament,L, divided by its diameter,D.
The effect of this local shear flow on the tensile stress
appears in this relation [9]:

σ =
[

3(1− f )+ f

ln k

(
L

D

)2
]
ηε̇ (1)

where the tensile stressσ is equal to the sum of two
terms multiplied by the product of the shear viscosityη

and the applied tensile strain rate ˙ε. The left-hand term,
3(1− f ), accounts for the tensile stress in the fluid. The
right-hand term represents the local shear flow contribu-
tion of the fiber volume fraction,f , the packing density
of the fibers,k, and the fiber aspect ratio. The square
of the aspect ratio is called the “stress magnification
factor”, since it increases the tensile stress of the sys-
tem. In DFA systems the aspect ratio can be immense.
If the average filament length is 20 mm with a diameter
of 0.007 mm, the resulting stress magnification factor
is over eight million. Therefore, the local shear-strain-
rate may dominate the tensile stress measured while
extending these systems at high strain rate.

When used as a composite reinforcement, Equation
1 shows that stretching DFA sheets at low tensile stress
requires short filaments that reduceL/D, a low viscos-
ity matrix, or both. Otherwise the equipment needed to
form large sheets of the material would have to match
the load requirements needed to stamp aluminum sheets
at room temperature [1]. However, DFAs used in rhe-
ology may have any useful filament length as long as it
provides the necessary magnification of strain rate for
a given experiment since a single tow of filaments is
extended.

2.2. Bundle and filament interaction
effects during fracture

Single filaments of carbon fiber fracture with a spread
of strain that the Weibull distribution models well [10–
14]. Various researchers have applied the results of sin-
gle filament tests to models of bundle testing [12–14].
The two effects that determine the measured response
in bundle testing are the load transfer rules and the fil-
ament interactions. The analysis of Coleman showed
that bundles of Weibull fibers would fail as a group at
the fracture stress of the weakest filament. Coleman’s
model used an infinite number of filaments within the
bundle. As each fiber failed individually, he assumed
that the load distributed evenly among the remaining

members. These assumptions lead to over-prediction
of the bundle strength of typical tow. The deterministic
method proposed by Masson and Bourgain applies in
the practical case of finite numbers of filaments [13].
The “weakest” link effect is present whenever the num-
ber of filaments climbs above as few as 100 members.
These results indicate that creating a distributed set of
independent filament breaks is difficult with a Weibull
bundle, because the failures become concentrated at the
lowest failure strain within the group.

In addition to the weakest link effect, filament inter-
actions drive bundle failure toward low strains. These
interactions occur when a failed filament transfers its
load to nearest-neighbor filaments during the elastic
recoil that follows the break. Both Cowkinget al. [10]
and Okoroafor and Hill [11] used acoustic emission to
study the fracture of lubricated glass fiber bundles at
low strain rates of 0.25 and 0.08 %/min, respectively.
Cowking’s quasi-static method reduced the strain on
the bundle after each filament broke and accomplished
single filament failures, or “singlet” failure, through
the entire experiment. Okoroafor and Hill used con-
stant crosshead speed to break glass and Kevlar bun-
dles [11]. Fig. 1 shows their data for Kevlar 29. This
figure illustrates the difference found in the ideal two-
parameter Weibull model and an experiment performed
at low and steady extension rate. The plot of survivabil-
ity on the ln(−ln)/ln scale shows that the shape param-
eter varies during the course of the experiment. Initially
the slope of the Weibull curve is slightly negative since
filaments within the bundle are not all perfectly aligned
and therefore strain unevenly. This misalignment re-
duces the initial bundle modulus and the modulus will
increase with additional strain as more filaments load
up. When the Weibull curve reaches a minimum and the
slope becomes positive for the remainder of the experi-
ment, Okoroafor and Hill find two connected regions of
linearity. The first is the singlet region wherein the fil-
aments fail independently. The second is a “multiplet”
region, where multiplet refers to two or more simulta-
neous or near-simultaneous failures. This higher slope
region of the curve results in a precipitous drop in load
and survivability as the remaining filaments rapidly fail.
In the data shown, about 80 percent of the filaments
failed in the region of multiplet failures.

Figure 1 Kevlar 29 bundle fracture test from Okoroafor and Hill [11]. At
high strain rate, the assumed singlet failure mode of the Weibull model
gave way to multiple filament (multiplet) failures before complete bundle
failure.
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2.3. Proposed DFA process
The effects discussed above show that creating a DFA
at high extension rates is challenging. A tow gripped in
the traditional manner, e.g. highly aligned with a sin-
gle filament length, fails over a more limited range of
strain than found with single filaments. Therefore, the
grip procedure used here–a helical wrap–attempts to
create sub-groups of filaments that can fracture with
greater independence from the whole bundle. The he-
lical wrap end condition provides two effects that con-
tribute to independent filament failure. One effect is a
variation in the sample gauge length. The shorter gauge
length section of the tow has a slightly higher strain rate
than that applied to the longest section. As the tension
continues, sub groups of filaments may fracture with
filaments breaking at the stress of the subgroup’s weak-
est member. This may distribute the failure of filament
subgroups to a broader strain range. The second effect
is a gradual reduction in the load within the tow from
the straight section of the gauge length, which is fully
loaded, to the clamped end of the wrapped filaments,
which sees a load equal to the clamping force at most.
Fig. 2 shows the three segments of the tow. A portion
of the gauge length is straight and runs vertically be-
tween two rods. At each end of the straight section is
a 250 mm length of tow for wrapping around the rods.
For the breaking step, the inner 125 mm of this ma-
terial wraps around the rods and clamps hold the tow
to the rods. The final 125 mm of fiber at each end re-
mains free and unloaded during the fracture process.
Once the filaments are broken, the two sections of the
bundle are separated by this procedure: the ends of the
gauge section are unwrapped, the crosshead is moved to
accommodate the extra 250 mm of straight tow, the un-
broken 125 mm of the tow at the extremes are wrapped
around the rods to provide the grip needed to extract the
interleaved, discontinuous filaments through extension
of the crosshead.

2.4. Extraction of Weibull parameters
from bundle tests

Analyzing the failure of the filaments in this paper ap-
plied the method presented by Chi, Chou, and Shen
[14]. They used the following equations to extract the

Figure 2 Diagram of the prepreg tow sample. This shows that the gauge
length includes two regions of tow that wrap around the rods for 125 mm
each. An additional 125 mm of fiber at each end provides the means of
finding the endpoint of the breaking region and a means of gripping the
fractured tow during the separation step.

Weibull shape and scale parameters from bundle test
results. They calculate the survivability of the bundle:

1− F(ε) = exp

[
−L

(
ε

ε0

)m
]

(2)

Survivability equals one, less the strain to failure prob-
ability F(ε) calculated from Weibull termsm, the shape
parameter, andε0, the scale parameter, for filaments of
lengthL at total strainε. When survivability is plotted as
ln(−ln(1−F(ε))) versus lnε, the Weibull shape param-
eterm represents the slope of the curve. Using Equa-
tion 2, Chi, Chou, and Shen show that the load/strain
curve for an ideal Weibull bundle comes from this re-
lation:

P = AEfεN0 exp

[
−L

(
ε

ε0

)m
]

(3)

Fig. 3 displays the load and survivability data for an
ideal filament bundle with values calculated for IM7
carbon fiber [14]. This ideal bundle has 12,000 fila-
ments (N0). The filament area (A) corresponds to a
diameter of 5µm. Filament modulus (Ef ) is 169 GPa
and length (L) is 100 mm. Weibull parameters used
were typical of IM7 carbon fiber, that is,m of 7.78
and ε0 of 0.028. Placing the load, survivability and
Weibull data on one semi-log plot shows the change
that occurs in each curve as the fracture process pro-
ceeds. The ln(−ln)−ln plot of the survivability data
presents a straight line whose slope is the value of the
Weibull shape parameterm; this paper refers to this
plot as the Weibull curve and to the shape parameter
as the Weibull slope. In the ideal case, the slope of the
shape parameter curve is constant from the beginning
of the experiment until the end. The modulus of the
Weibull bundle decreases monotonically from its initial
value as strain increases. Therefore, the two-parameter
Weibull indicates that filament failure occurs from the
very start of the loading process although, for uniformly
aligned bundles, the failures should start at some min-
imum stress level that is much greater [12]. This is a
good approximation for carefully controlled tests at low
strain rates.

Figure 3 The ideal Weibull bundle of Chi, Chou and Shen under ex-
tension to total failure [14]. Bundle load peaks and then falls to zero
as the filaments reach their maximum loads and fail. The survivability
(1− F(ε)) of the filaments falls to zero (all fractured) as strain increases.
The Weibull shape parameter,m, is constant throughout the process.
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The plot of survivability in Fig. 3 shows that 99 per-
cent of the filaments are intact when the load reaches
81 percent of the peak load. At the load peak, 88 per-
cent of the filaments remain and failure with continued
strain is gentle. Load and percent filaments remaining
decrease at a moderate negative slope rather than as a
sharp vertical drop.

3. Experimental
This section presents the details of the experiments in-
cluding sample preparation, the method used to extend
the tows until failure and the analysis of the length dis-
tribution obtained from the fracture process. These frac-
ture experiments were a precursor to studying the rhe-
ological behavior of the impregnated DFA tows drawn
under several strain rates. Those experiments used a
design-of-experiments approach to quantify the effect
of average filament length and extension velocity on the
transient viscous or viscoelastic response of the bundle.
That design selected three gauge lengths that ranged
from the shortest to the longest possibly made with the
fixtures used; therefore, carbon tows were broken at
these gauge lengths: 287, 362, and 400 mm.

3.1. Sample preparation
The tow used in this study was a preimpregnated car-
bon fiber (IM7) that contained an uncured epoxy resin
(TCR) as the matrix. The manufacturer stated that the
fiber volume fraction for the spool was 56.1 percent.
Spools contained approximately 450 g of the compos-
ite tow. Since twisting of the tow may change the frac-
ture and extension response of the bundle, tow samples
remained untwisted during these experiments.

An axle held the spool of prepreg tow above the work-
bench with the spool horizontal. A forceps clamped the
free end of the tow and kept it from twisting as a sample
was unrolled. Once enough material was unrolled, the
another forceps clamped the tow so that the two could
be used to fix the bundle to the test fixture. A straight-
edge razor blade cut the sample from the spool. Using
the forceps, the tow was wrapped, without twisting,
around the rods for 4.5 turns on each end. The num-
ber of turns came from a set of experiments that found
three turns sufficient to hold the lubricated tow without
slipping. The fourth wrap further reduced the load at
the clamped end. The wrapping angle kept each turn
of the tow from contacting the prior turn. Fig. 2 shows
the various regions of a fiber sample. The 125 mm of
tow wrapped around the rods have filaments breaking
within them and they are part of the gauge length. The
central section of the tow ran vertically between the rods
and the length of this section was 37, 112, or 150 mm,
depending upon the total gauge length desired.

3.2. Tensile extension
An Instron 8501P hydraulic-actuator tensile test-
machine extended the tow. The machine pulled the im-
pregnated tow to tensile failure of all of the filaments.
While forming the DFA by the method presented below,
rheological effects were avoided by using Equation 1 to
set the tensile strain rate. The experiments performed
for this paper create a DFA from an initially continu-

ous tow. At the start of the test, the filaments stretch
in parallel without relative motion to their neighbors;
therefore, there are no local shear effects. As filaments
fracture and the DFA forms, further extension of the tow
generates a viscosity response since discontinuous fila-
ments move relative to their neighbors. In the transition
a mixed mode of tensile response exists with portions of
the tensile load coming from the strain in the intact fil-
aments and the balance coming from the viscous drag.
At high strain rates, Equation 1 shows that the viscous
component may contribute a substantial portion of the
load. In order to analyze the breaking of the filaments,
the strain rate must be low enough to keep the viscous
contribution to a minor amount.

In this study, the apparent elongational viscosity of
the DFA/TCR system at the longest mean filament
length set the extension velocity used to fracture the
carbon tow. Since the viscosity effect increases with
the square of the aspect ratio, filaments broken with
the longest gauge length have the largest viscous ef-
fect. Preliminary parametric experiments extended tow
through the breaking process and continued at the same
extension velocity into DFA stretching. At high strain
rates, the elongation viscosity generated a tensile stress
at a substantial fraction, i.e. greater than 50 percent,
of the bundle breaking stress. At an extension rate of
12 mm/min the viscosity-induced load was less than
five percent of the bundle fracture load. Therefore, this
speed was used for the shorter gauge length samples as
well.

3.3. Filament length measurement
The filament length distribution can be determined di-
rectly by manually separating filaments from the bundle
and measuring their lengths. There are two problems
with using this method. First, it is impractical to mea-
sure more than a small sample of the filaments. The
small sample distribution must be converted into the
actual distribution by statistical means, i.e., the method
of likely extrema. Applying the statistical method re-
quires assuming an appropriate distribution function for
the filament length. Second, separating long individ-
ual carbon filaments from a tow produces questionable
length distribution data since filaments can break during
the process [13]. Therefore, the sampled distribution
may have no relationship to the actual filament lengths
within the tow. In this work the fractured tow’s lineal
mass distribution provided the length-distribution data
shown in these results. Using mass distribution avoids
the problems noted above since the entire tow provides
the data. The lineal mass distribution of each half of the
fractured tow describes the length distribution that it
contains.

From the tow we must determine the filament length
distribution, which is a probability density function
g(x), that is subject to these requirements:

P(a < l < b) =
∫ b

a
g(x) dx

g(x) ≥ 0 for allx (4)

and
∫ ∞
−∞

g(x) dx = 1
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wherel is a particular filament length,a andb describe
a range of lengths,g(x) is positive definite, and the total
probability of finding filaments within the gauge length
is 1. Integratingg(x) twice obtains these relations:

G(x) =
∫ x

−∞
g(t) dt

(5)

γ (x) =
∫ x

−∞
G(t) dt

The functionsG(x) andγ (x) are the cumulative distri-
bution and its first integral, respectively. It is straight-
forward to show thatγ (x) is proportional to the lineal
mass distribution collected in the following manner. Af-
ter testing, half of the tow rested on a sheet of wax paper.
With its overall lengths measured, it was sectioned into
12.7 mm pieces for weighing. As each piece joined
the previous ones on the scale, the rising weight was
recorded. Taking two derivatives of this mass data with
respect to the tow length would produce the length dis-
tribution if the data were well behaved. However, this
procedure is sensitive to the usual experimental varia-
tion in the mass measurement results and two deriva-
tives of the data cannot be taken directly.

If a known statistical distribution fits the data, a suit-
able cumulative distribution [14] fit to the first deriva-
tive curve would allow a second derivative calculation.
Rather than assume any specific distribution, several
probability distributions were twice integrated to cre-
ate a series ofγ (x) reference curves. The shape of the
tow mass distribution compared to these curves indi-
cates the most appropriate probability density function.
A single derivative of the mass data is nondimension-
alized and fit to the appropriate cumulative distribution
function by a “least-squares” fit of the data.

Fig. 4 shows an example calculation of the length dis-
tribution for a 30 cm length of tow broken with a gauge
length of 20 cm. The first data series in Fig. 4 is the dis-
tributed mass of the tow versus the sample length. The
initial data lie outside of the gauge length, that is, the
filaments are continuous. Here the lineal density (g/cm)
is constant, which the constant slope indicates. Within
the gauge length, the density falls as fewer and fewer
filaments remain in the sample. Taking the first deriva-
tive of the mass data produces the lineal density shown
by the second data series. Initially the density is con-

Figure 4 Linear mass distribution of a bundle of filaments calculated
from a normal distribution of lengths with an average length of 10 cm
and a standard deviation of±3.12 cm. Twice integrating the length dis-
tribution obtains the cumulative mass shown as g versus cm.

stant; then it falls as the total number of filaments drops
along the gauge length. A second derivative of the mass
data generates the length-distribution curve with units
of g/cm2 shown in the final data series. Before the gauge
section the distribution data are zero since there is no
variation in length. The length varies across the gauge
section and the curve describes that distribution.

When nondimensionalized, an appropriate statistical
distribution fits the length-distribution curve in Fig. 4.
In this example, a normal distribution from Choi [15]
with the mean ofµ= 10.0 cm and the standard devia-
tionψ = 3.1 cm takes this form:

f (x) = 1√
2πψ

e(−0.5)[(x−µ)/ψ ]2

(6)

The appropriate statistical distribution for a fractured
tow is visible on a non-dimensional chart of mass ver-
sus length calculated from several standard distribu-
tions such as uniform or normal functions using mul-
tiple values of the standard deviation. Fig. 5 presents
four curves calculated from twice-integrated statistical
functions for one uniform and three normal distribu-
tions. The specific statistical functions integrated ap-
pear in Fig. 6. In Fig. 5 squares show the normalized

Figure 5 Mass data from fractured tow with 287 mm gauge length com-
pared with the mass distribution derived from four statistical distribu-
tions: uniform, broad normal, normal, and narrow normal. Lines repre-
sent the calculation of the mass distribution from the twice-integrated
statistical functions. Open squares show data from a 287 mm fractured
tow. The normal distributions shown have a mean of one-half the gauge
length and standard deviations of±15, 31 and 100 percent of the mean. A
normal distribution with a standard deviation of±15 percent represented
the mass distribution well.

Figure 6 The uniform and normal statistical distributions integrated to
obtain the theoretical tow mass distributions shown in Fig. 5.
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Figure 7 Collected fracture load-strain data for impregnated tow with
gauge lengths of 287, 362 and 400 mm. The heavy lines are curves of the
tests at each length that guide the eye and show the qualitative differences
among the test samples.

mass distribution from one-half of a fractured carbon
tow with a gauge length of 287 mm. The bundle is
best represented by a normal distribution with a narrow
standard deviation.

4. Results and discussion
The results appear here in the order obtained during the
experiments. First, the fracture data show the effect of
the helical end condition and rapid extension rate on the
breaking stress for several gauge lengths. Finally, the
length-distribution data show that this method effec-
tively produces useful discontinuous samples.

A summary of the fracture data appears in Fig. 7 as
load versus strain. There is an obvious difference in
the tensile response of the 400 mm gauge length sam-
ples compared with the two shorter gauge lengths. The
post-peak region of the 400 mm sample shows that the
load falls in a gentle slope as opposed to the near vertical
drop of the shorter samples. The shorter samples, gauge
lengths 362 and 287 mm, show increasing similarity to
traditional gripping techniques as the gauge length de-
creases. That is, the load rises with a greater slope and
the post-peak load drop is nearly vertical. Samples at
all gauge lengths show a modulus increase with strain
as the shortest sub-bundles load up to failure and the
load is taken up by an increasing percentage of the
12,000 filament tow. After reaching a maximum num-
ber of load-sharing filaments, the modulus falls again
as filaments fail and the bundle separates.

4.1. Fracture and length distribution
at 400 mm

Fig. 8 shows the bundle load, survivability, and Weibull
plot data versus strain typical of the 400 mm gauge
length samples. The survivability at the point of maxi-
mum bundle modulus indicates that only 62 percent of
the filaments are intact at that point. This is well under
the 99 percent expected for an ideal Coleman/Weibull
bundle and the 80–90 percent found in typical bundles.
Note that the remaining filaments cooperatively share
the load and obtain a Weibull shape parameter value
of 3.8 only after the peak load has passed. Therefore,
38 percent of the filaments failed in sub-bundle groups.
This shape parameter is lower than the value of 7.78

Figure 8 Bundle load, survivability, and Weibull slope for impregnated
IM7 tow with a gauge length of 400 mm. The survivability starts at
61.8 percent indicating that 38.2 percent of the filaments failed before
the bundle broke in the Weibull fashion. The shape parameter,m, rises
to 3.8, which is lower than is typical of well aligned IM7 fiber.

Figure 9 Mass and filament length distribution of a fractured tow with
a gauge length of 400 mm. The lines are calculated from the normal
distribution and the second integral of the distribution fit to each piece.
Squares and circles represent the mass distribution data, except in the
case of the frequency distribution where they indicate which distribution
curve belongs to each section of the tow. The bottom and top sections
have discontinuous filaments with average lengths of 229 and 184 mm,
respectively. Standard deviation is broad, over±40 mm, and the overall
average filament length is 207 mm.

typical of IM7 filament bundles. This lower shape pa-
rameter and the gentle slope of the post-peak region
imply that the filaments are failing independently and
over a large range of strain. This result shows that well
distributed filament breaks were achieved in the 400
mm gauge length as verified by the length distribution
data that immediately follows.

Fig. 9 shows the mass distribution data and the re-
sulting length distribution for the 400 mm gauge length.
The square and circle symbols on the mass curves show
the data points measured from the upper and lower sec-
tions of the tow. The lines connecting the points come
from the second integral of the length frequency data
shown in the figure. The two sections of the tow had av-
erage lengths of 229 and 184 mm. Their respective stan-
dard deviations were±45 and±42 mm. Interacting as
an assembly of discontinuous filaments, the tow had an
average length of 207± 45 mm, which is close to one-
half the gauge length. The longest filament was 363 mm
long; this is 91 percent of the gauge length. These results
indicate that filaments broke within the helical section
of the tow and almost to the position of the spring clamp.
The wide spread of the filament lengths across the gauge
shows that this tow is useful as a DFA for forming exper-
iments. One factor that may have improved the response
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Figure 10 Bundle load, survivability, and Weibull slope for impregnated
IM7 tow with a gauge length of 362 mm. The survivability starts at 68
percent when the bundle reaches maximum modulus. The shape param-
eter,m, rises to 7.8; this is typical of aligned IM7 fiber bundles.

of this long tow is the length effect of the filament flaws.
With this long gauge-section and with the majority of
the gauge section straight, the flaw population in the
bundle is large and that may improve substantially the
quality of the DFA. Indeed, as shown below, shorten-
ing the length of the bundle tended to concentrate the
breaks.

4.2. Fracture and length distribution
at 362 mm

The middle gauge length, 362 mm, produced the data
shown in Fig. 10. The behavior is closer to the results of
traditional bundle tests than that found at 400 mm. At
maximum modulus 68 percent of filaments remain, a
small increase from the prior result. The shape parame-
ter reaches 7.8, which agrees with the published values
for IM7 fiber. Note that the Weibull slope establishes
this value just at the peak in the load.

Fig. 11 shows that this 9.5 percent shorter gauge
length resulted in a 10 percent reduction in the aver-
age filament length of each tow section and the interac-
tive average filament length. These values are 203 mm,
168 mm and 185.5 mm for the top, bottom and interac-
tive averages respectively. Since the length distributions
remain broad and the Weibull shape parameter single-
valued, this gauge length is acceptable for making DFAs
for experimentation.

Figure 11 Mass and filament length distribution of fractured tows with
a gauge length of 362 mm. Data for the top and bottom sections of a
fractured tow are shown. The sections have discontinuous filaments with
average lengths of 203 and 168 mm, respectively. Standard deviation is
broad and the overall average filament length is 186 mm.

Figure 12 Bundle load, survivability, and Weibull slope for impregnated
IM7 tow with a gauge length of 287 mm. The survivability starts at 88
percent when the bundle reaches maximum modulus; this is typical of
aligned IM7 fiber bundles. The shape parameter,m, rises to 20.0, then
falls to 5.0 at the end of the experiment. Multiplet fiber failure occurs
during the early fracture of the bundle and then the final filaments fail
individually.

4.3. Fracture and length distribution
at 287 mm

Results for the shortest possible gauge length, 287 mm,
indicate that there is a length effect in the fracture pro-
cess. Fig. 12 shows that 88 percent of the filaments
are intact at maximum modulus. This level of surviv-
ing fibers is closest to the usual bundle condition for
tensile testing. However, the initial shape parameter is
large at 20.0. Multiple simultaneous fiber breaks may
be responsible for a Weibull slope of this magnitude
[11]. After the initial fracture, when only 20 percent of
the filaments remain, the shape parameter falls to 5.0;
this indicates singlet failure among this last group of fil-
aments. This result is the reverse of prior experiments
at low strain rate [11]. There, the filaments transitioned
from initial singlet failures to multiplet failures as strain
increased. This concentration of failures is apparent in
the mass and length distribution data.

Fig 13 shows that the length distribution in the tow is
narrow. Average length for each piece is 57 and 51 mm
for the top and bottom pieces of tow. Note that the mean
lengths here are only 18.8 percent of the gauge length.
This shows that the fiber breaks concentrated and did
not use the entire span of the gauge length. The DFAs
formed at the longer gauge lengths had mean lengths of
51.2 and 51.8 percent of the gauge length, which is near
the ideal condition. Although shorter filament lengths

Figure 13 Mass and filament length distribution of fractured tows with
a gauge length of 287 mm. The sections have discontinuous filaments
with average lengths of 57 and 51 mm, respectively. Standard deviation
is narrow and the average length is only 18.8 percent of the gauge length.
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are desired, the strong effect of multiplet failures would
make reproducible DFA forming difficult at this gauge.

5. Conclusions
With respect to the first objective of this work, it was
determined that the shear strain magnification effect
suggests that the filament lengthL should be as small
as possible in order to avoid high tensile loads during
drawing operations. This impacts the second objective,
i.e., applying filament and bundle fracture behavior to a
method of stretch breaking the fibers, since the process
must make the shortest possible filaments with widely
distributed breaks.

With regard to the second objective, the results show
that forming well distributed DFAs is possible at high
strain rate with large gauge length. The fully devel-
oped flaw density of the fiber keeps the failure loads
low enough to avoid catastrophic failure. The filament
lengths are long on average at 207 mm, but filament
breaks were distributed well. At short gauge length,
DFAs must be formed at low strain rates to avoid mul-
tiplet effects that turn the length distribution into a local-
ized break. Since the highest filament strengths occur at
short gauge-length the failure is catastrophic. Repeata-
bility is difficult to achieve with a chaotic, interacting
failure process.

As a reinforcing fiber, DFA may be formed at average
filament lengths of 200 mm and strain rates of approx-
imately four-percent strain/min. It may be possible to
increase the strain rate until the average filament length
begins to drop through interactions between fractured
and intact filaments. However, strain rates must not be
high enough to create viscous heating effects that could
damage the resin.

As a microrheometer system, DFA can be produced
in single tows of carbon fibers impregnated with the
fluid of interest. Again, the tensile strain rate must be
low enough to form the DFA structure without damag-
ing the fluid, which is the sample of interest.

Finally, obtaining highly aligned filaments at signif-
icantly shorter lengths would require using a tow with
a greater flaw density. Perhaps crimping the tow in a
preliminary step could add enough flaws to reduce the
filament length substantially.
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